

NuArch meeting on nuclear architecture, lamin function and autophagy Czech-Norwegian Research Programme (CZ09) University of Oslo, April 19-20, 2016

Workshop on Chromatin immunoprecipitation (ChIP)

Prepared by Torunn Rønningen, Anja Oldenburg, Philippe Collas

Various degrees of chromatin packaging in the eukaryotic nucleus

Structural organization of eukaryotic chromatin

Epigenetics:

Heritable modifications of DNA or chromatin (histones) that affect gene expression without changing the DNA sequence

Two main components of epigenetic regulation: DNA methylation

Post-translational modifications of histones

DNA methylation occurs on cytosines in CG dinucleotides

The N-terminal tails of histones are post-translationally modified

Histone modifications mark specific regions in the genome and correlate with a gene expression status

How to analyze histone modifications? Chromatin immunoprecipitation (ChIP)

Fig. 1. Overview of the ChIP procedure

Objective of the ChIP assay:

Determine DNA sequences associated with a protein of interest (POI)* in the genome

- Single gene or region level: ChIP-qPCR
- Genome-wide: ChIP-seq
- *Transcription factor, histone, RNA polymerase, chromatin remodeling enzyme, DNA repair enzymes, other chromatin-bound factor

ChIP Protocol

The CollasLab histone ChIP protocol

Cell harvesting

- 1. Harvest cells according to your lab protocol for the cell type of interest
- 2. Count cells and sediment them at 300 g for 10 min at room temp
- 3. Resuspend up to $2x10^6$ cells in 500 µl PBS containing 20 mM Na-butyrate (optional); see notes
- 4. Transfer into a 1.5-ml tube

Notes:

- If you have $> 2x10^6$ cells, and up to $10x10^6$ cells, resuspend them in 1 ml PBS in Step 3.
- Na-butyrate (NaBu) is an HDAC inhibitor and prevents deacetylation of proteins.

DNA-protein crosslinking with formaldehyde

- 5. In a fume hood, and for 500 μl PBS containing cells, add 14 μl formaldehyde from a 36.5% stock (Sigma)
- 6. Incubate for 10 min at room temp. <u>Note</u>: proteins other than histones may need longer incubation time.
- Add 57 µl of 1.25 M glycine stock made in PBS (this gives 0.125 M final concentration)
- 8. Incubate for 5 min at room temp

Figure: Formaldehyde cross-links amino or nitro groups within 2 Å of each other.

Washing of crosslinked cells (on ice)

- 9. Centrifuge formaldehyde cross-linked cells at 470 g for 10 min at 4°C (the swing out rotor in the cold room). Place the formaldehyde waste into a separate flask in the fume-hood.
- 10. Resuspend the cell pellet in 500 μl ice-cold PBS containing 20 mM Na butyrate (optional)
- 11. Centrifuge at 470 g for 10 min at 4°C
- 12. Repeat steps 10 and 11 once

Cell lysis (on ice)

- 13. Resuspend the $2x10^6$ cell pellet in 180 µl lysis buffer w/ Na butyrate (optional), protease inhibitor cocktail (Pi) and PMSF on ice.
- 14. Vortex and allow lysis to occur for 5 min on ice. Pipette if necessary.

- If less than $2x10^6$ cells, resuspend them in 120 µl lysis buffer w/ Na butyrate (optional), Pi and PMSF on ice.
- Na butyrate, Pi and PMSF should be added to the lysis buffer just before use; see page 6. Half -life of PMSF is 30 min.
- This tube should not be kept on ice because SDS might precipitate.
- Time of cell lysis might depend on cell type. Check lysis under a phase contrast microscope after putting 2 μ l of sample between a glass slide and a coverslip.

Chromatin fragmentation by sonication

15. Fragment chromatin by sonication using a Bioruptor (Diagenode; Figure) with the following settings: 30 sec ON/OFF at HIGH power for 3 or 4 times 10 min

Notes:

- Remember to turn on the water pump <u>before</u> starting sonication to allow cooling
- The tubes should be balanced in the Bioruptor wheel (as you would in a centrifuge)
- Time of sonication should be optimized to get chromatin fragment sizes of 200-500 bp
- Efficiency of sonication depends on cell type and number, cross-liking conditions, sample volume and number of tubes in the Bioruptor wheel

16. Centrifuge at 10000 g for 10 min at 4°C using a swing-out rotor

- 17. Transfer the supernatant ('chromatin') into a new tube; take care to avoid the top layer and the bottom fraction (debris) at the bottom of the tube (**Figure**). The chromatin must be kept on ice or frozen.
- 18. Transfer 10 µl of chromatin to a new tube for fragment size analysis on gel

ChIP protocol NuArch Workshop April 2016

Analysis of chromatin fragment size

It is important to assess the length of chromatin fragments (200-500 bp) before using chromatin for ChIP in order to ensure you have fragments that are long enough for PCR analysis, and short enough to cover only the genomic region of interest (resolution).

- 19. Add 1 µl RNase (from a 500 ng/µl stock) to 10 µl chromatin (final: 50 ng/µl)
- 20. Incubate at 37°C for 20 min
- 21. Add 190 μl elution buffer containing 1% SDS; if you started with more than 10 μl chromatin to a total volume of 200 μl.
- 22. Add 5 µl Proteinase K (from a 2 mg/ml stock)
- 23. Incubate at 68°C, 500 rpm for 2 h on Thermomixer (**Figure**)
- 24. Purify DNA; see p. 7 DNA purification, starting from step 2. Adjust volumes to 200 ul.
- 25. Dissolve DNA in 10 µl MQ H₂O.
- 26. Analyze DNA in a 1.5% agarose gel with suitable size markers to determine fragment size

Figure: Assessment of chromatin fragmentation after sonication (time indicated in min). Two cell types examined here: HT1080 and adipose stem cells (ASC). **Red arrows** example of appropriately sonicated chromatin.

Chromatin measurement and dilution prior to ChIP

- 27. Determine the amount of chromatin on a Nanodrop spectrophotometer at A₂₆₀.
- 28. Dilute the chromatin to 2 U/ μl with RIPA w/ NaBu (optional), protease inhibitor cocktail (Pi) and PMSF on ice.

Note:

• Remember that you need 100 μ l of input chromatin later in the procedure.

Coupling of antibody to magnetic Dynabeads

Note:

• Use Dynabeads 'Protein A' or 'Protein G' depending on the animal origin of your ChIP antibody

Bioruptor sonication

• 30 sec on /30 sec off

Chromatin fragments

Main fraction 200 bp

• 45 min of:

High power

• 150-400 bp

- 29. Vortex the bottle of Dynabeads stock for 1 min before taking out beads
- 30. Calculate the amount of beads you need based on the number of ChIPs you will do. In a 1.5 ml tube, place 10 μ l of beads per ChIP to be done, and add 10 % of beads extra; use several tubes if necessary, given that the total volume in step 34 cannot exceed 1.4 ml
- 31. Add 2.5 volumes of RIPA buffer and vortex
- 32. Incubate on magnet for 1 min and remove the buffer (Figure).
 <u>Note</u>: to avoid beads trapped in the lid, snap-spin the tube in a mini-centrifuge (Figure) before putting the tube on the magnet.
- 33. Repeat steps 31 and 32
- 34. Resuspend the beads in 10 x volume of RIPA buffer
- 35. To each 0.2 ml tube of an 8-tube strip pre-labeled with right antibody, add 100 μl Dynabeads (from step 34) and 2.5 μg antibody
- 36. Incubate the tubes at 40 rpm on a rotator in the cold room for at least 2 h or overnight (**Figure**)

Notes:

- Different antibodies might have different concentrations
- Ensure the beads are mixed well in the solution throughout the procedure as they sink fast

Magnetic rack for 200 µl tubes

Minifuge

Rotator

Immunoprecipitation

- 37. Snap-spin the tubes in a mini-centrifuge to bring down what is trapped in the lid (Figure)
- 38. Place tubes on a magnet on ice for 1 min
- 39. Remove the supernatant while the tubes are on the magnet; throw away the supernatant. Remember to change pipette tips between tubes as these may contain different antibodies
- 40. Add 100 μl of chromatin at 2 U/μl (from step 28) and incubate for 2 h at 40 rpm on a rotator in the cold room

Washing of the immunoprecipitated material (on ice)

- 41. Snap-spin the tubes in a micro-centrifuge to bring down any solution trapped in the lid
- 42. Place the tubes on a magnet on ice for 2 min
- 43. Remove the supernatant while tubes are on the magnet; throw away the supernatant, being careful to avoid the Dynabeads
- 44. Add 100 µl RIPA buffer and incubate tubes for 4 min at 40 rpm on a rotator in cold room
- 45. Repeat step 41 to 43 twice
- 46. Add 100 μ l of TE buffer (pH 8.0) and incubate tubes for 4 min at 40 rpm on a rotator in the cold room
- 47. Transfer the content of the tubes to new tubes, place on magnet for 1 min and remove TE

Elution and crosslink reversal

- 48. Add 150 µl elution buffer (see ChIP Buffers) containing 1% SDS and 50 ng/µl Proteinase K
- 49. To 100 μl of INPUT chromatin, add 200 μl of elution buffer containing 1% SDS and 50 ng/μl Proteinase K
- 50. Incubate ChIP DNA and Input chromatin tubes at 68°C for 2 h at 1300 rpm on a Thermomixer
- 51. Snap-spin ChIP DNA tubes and place on magnet for 1 min; transfer buffer into 1.5 ml tubes
- 52. To the Dynabeads on magnet, add another 150 μl of elution buffer and incubate at 68°C for 5 min at 1300 rpm on a Thermomixer
- 53. Snap-spin the tubes and place tubes on magnet for 1 min; transfer the buffer into the 1.5 ml tubes of step 51 above (total is 300 μl per tube).

Note:

- If ChIP DNA is to be used for 'whole genome' amplification, microarray analysis or sequencing, RNase treatment is necessary for DNA purification; see separate protocol.
- At this stage, you have collected ChIP material containing DNA ready to be purified.

Purification of the ChIP DNA

- 1. Add 200 μl elution buffer to 300 μl (2x150 μl) supernatant and to the tube containing input chromatin (see Note, Step 28)
- 2. Add 500 µl (1x volume) phenyl-chloroform isoamylalcohol (pre-mixed at 24:24:1)
- 3. Invert the tubes several times and centrifuge at 15000 g for 5 min
- 4. Use a pipette to carefully collect 450 µl of the upper phase and transfer into a new tube
- 5. Add 450 µl (1x volume) of chloform isoamylalcohol (pre-mixed at 24:1)
- 6. Invert the tubes and centrifuge at 15000 g for 5 min
- 7. Carefully collect 400 μ l of the upper phase and transfer into a new tube
- 8. Add 40 μl (0.1x volume) 3 M Na-acetate, 10 μl acrylamide carrier (0.25%) and 1 ml (2.5x volume) ice-cold 96% EtOH
- 9. Place samples at -80°C for 2 h or overnight to allow the DNA to precipitate
- 10. Centrifuge at 20000 g for 15 min at 4°C
- 11. Dry the DNA pellet for 15 min at room temp by leaving the tube open
- 12. Dissolve the DNA in 100 μ l MQ H₂O. <u>Note</u>: this volume may vary depending on the chromatin concentration you started with; if the DNA is for amplification, microarray or sequencing, dissolve in 10 μ l MQ H₂O.
- 13. Leave the tube at room temp to dissolve for several hours to overnight
- 14. Freeze the DNA at -20° C. DNA can be stored frozen for months.

LYSIS BUFFER	Stock	50 ml	1 ml	Room temp
1% SDS	10%	5 ml		•
10 mM EDTA (pH 8)	0.5M	1 ml		
50 mM Tris-HCl (pH 8)	1 M	2.5 ml		
dH ₂ O		41.5 ml		
Protease inhibitor cocktail	100x		10 µl	Add to 1 ml of
1 mM PMSF	100 mM		10 µl	lysis buffer just
20 mM Na-butyrate	1 M		20 µl	before use

ChIP Buffers

RIPA BUFFER	Stock	100 ml	1 ml	4°C
0.1% SDS	10%	1 ml		
0.1% sodium deoxycholate		0.1 g		
1% Triton X-100	100%	1 ml		
1 mM EDTA (pH 8)	0.5 M	200 µl		
0.5 mM EGTA (pH 8)	0.5 M	100 µl		
140 mM NaCl	5 M	2.8 ml		
10 mM Tris-HCl (pH 8)	1 M	1 ml		
dH ₂ O		93.9 ml		
Protease inhibitor cocktail	100 x		10 µl	Add to 1 ml of
1 mM PMSF	100 mM		10 µl	RIPA buffer just
20 mM Na-butyrate	1 M		20 µl	before use

ELUTION BUFFER	Stock	50 ml	4°C
50 mM NaCl	5 M	500 µl	
20 mM Tris-HCl (pH 7.5)	1 M	1 ml	
5 mM EDTA (pH 8)	0.5 M	500 µl	
dH ₂ O		42 ml	
1%SDS	10%	5 ml	Add just before use

Results

ChIP-endpoint PCR

HT1080: cancer cell line; **ASC**: primary adipose stem cells *GAPDH*: housekeeping gene, expressed in both cell types *MGMT*: tumor suppressor, expressed in ASCs not in HT1080 *PPARG2*: adipogenic gene "poised" in ASCs, no expressed in HT1080.

Results

ChIP-qPCR

Results

ChIP-seq

□ Integrated Genomics Viewer (IGV): <u>https://www.broadinstitute.org/igv/</u>

, IGV									
File Genomes View Trac	cks Regions	Tools GenomeS	pace Help						
Human hg19	• dr1		 dv1:62,074,044 	62,291,842	Go	₫ • ►	🍄 🗖 🗙 🟳		
	p3631	p3621 p3612	p353 p343	p34.1 p32.3	p 32.1	p31.2 p31.1	p22.3 p22.1 p21.2	p13.3 p13.1 p11.1	q12
	62 000 kb	1	62 100 kb 	42 120 kb	1	62 140 kb 	42 160 Mb	62 100 kb	
H3K4me1_Day_0.b	(0 · 20]					1.			
H3K4me2_Day_0.b	(0 · 20)		14						4
H3K27me3.bw	(0-20)		ە 🛎 ئەيارىي	i ac E J		.1			
H3K36me3.bw		1	il n			. ar 4	di batan na dita	tuli li konstante ade	
asc_12_15	7	4	8 3	7	15 7	47	647	6 7	4
RNA_Day_0.bw	(0 · 4421)								
RefSeq Genes				MGC347	96		• • • • • • • •	TM2D1	+•

UCSC Genome Browser: <u>https://genome.ucsc.edu/</u>

<u>/</u>				SYDH Hist	one Track S	Settings - Mo	zilla Firefox				÷ _ 5
jile <u>E</u> dit <u>V</u> iew Hig	tory <u>B</u> ookmarks	Tools Help									
EC2 Manager	nent Co 🗙 🔤	Galaxy - UC	Davis Bi	× 🔀 SYD	H Histone Tra	ack 🗙 🕌					
🗲 🕲 genome.uc	sc.edu /cgi-bin/hgTi	rackUi?hgsid	39972025	7_ISIS7dwteG	pnOLAkdJWG	0YhekSbw0&c+	🕶 😋 🔍 Sear	ch			1
R Genon	tes Genome l	Browser 1	fools I	Mirrors [Downloads	My Data	Help A	bout Us			
SYDH Histone	Track Setting	s						ENCOD	E Downloads Sub	tracks] Descript	tion Contact
inal valu	(AENC Histo	ne)									
Maximum displa Select views (<u>he</u> <u>Peaks pack</u>	y mode: hide	Submit	Cancel	Reset to	defaults						
Maximum displa Select views (<u>he</u> <u>Peaks</u> pack • Select subtracks	y mode: hide b): Signal full s by factor and a ctor H3K4me1	Submit	Cancel	Reset to	defaults H3K27ac	H3K27me3	H3K36me3	Input	1		
Maximum displa Select views (he <u>Peaks</u> pack • Select subtracks • All Fa Cell Line	y mode: hide <u>b</u>): <u>Signal</u> full s by factor and o ctor H3K4me1 + -	Submit Submit Cell line: H3K4me3	H3K9ac	Reset to H3K9me3	H3K27ac	H3K27me3	H3K36me3	Input	[
Maximum displa Select views (he Peaks pack • Select subtracks • - All Fa Cell Line K562 (Tier 1)	y mode: hide p): Signal full s by factor and o ctor H3K4me1 +-	Submit Submit H3K4me3 +-	H3K9ac	Reset to	H3K27ac +-	H3K27me3	H3K36me3	Input •-			
Maximum displa Select views (he Peaks pack = Select subtracks - All Fa Cell Line K562 (Tier 1) MCF-7 (Tier 2)	y mode: hide p): Signal full s by factor and o ctor H3K4me1 +- +-	Submit	H3K9ac	H3K9me3 +-	H3K27ac	H3K27me3 +-	H3K36me3	Input •-			
Maximum displa Select views (he Peaks pack = Select subtracks +- All Fa Cell Line K562 (Tier 1) MCF-7 (Tier 2) HCT-116	y mode: hide p): Signal full s by factor and ctor H3K4me1 + +-	Submit	H3K9ac	H3K9me3 +-	H3K27ac +-	H3K27me3	H3K36me3	Input •-			
Maximum displa Select views (he Peaks pack = Select subtracks - All Fa Cell Line K562 (Tier 1) MCF-7 (Tier 2) HCT-116 NT2-D1	y mode: hide p): Signal full s by factor and ctor H3K4me1 +- - -	Submit	H3K9ac •-	H3K9me3	H3K27ac •-	H3K27me3	H3K36me3	Input			
Maximum displa Select views (he Peaks pack Select subtracks - All Fa Cell Line K562 (Tier 1) MCF-7 (Tier 2) HCT-116 NT2-D1 PANC-1	y mode: hide p: Signal full s by factor and o ctor H3K4me1 +- +- +- +- +- +- +- +- +- +-	Submit	H3K9ac	H3K9me3	H3K27ac +-	H3K27me3	H3K36me3 •	Input			
Maximum displa Select views (he Peaks pack = Select subtracks - All Fa Cell Line K562 (Tier 1) MCF-7 (Tier 2) HCT-116 NT2-D1 PANC-1 PBMC	y mode: hide p: Signal full s by factor and of ctor H3K4me1 +- +- +- +- +- +- +- +- +- +-	Submit	H3K9ac	H3K9me3 *-	H3K27ac	H3K27me3	H3K36me3	Input ★ • 0 0 0 0 0 0 0 0 0 0 0 0 0			

Example: H3K4me3 profiling in mouse ES cells

Combinations of epigenetic modifications can be modeled Easier to visualize

Easier to analyze at the level of the whole genome

Epigenetic patterns change during cell differentiation

Example: differentiation of adipose stem cells into adipocytes

Three international research programs are mapping epigenetic modifications

ENcyclopedia Of DNA Elements http://www.genome.gov/encode/

